The Challenge of Non-Communicable Diseases (NCD)

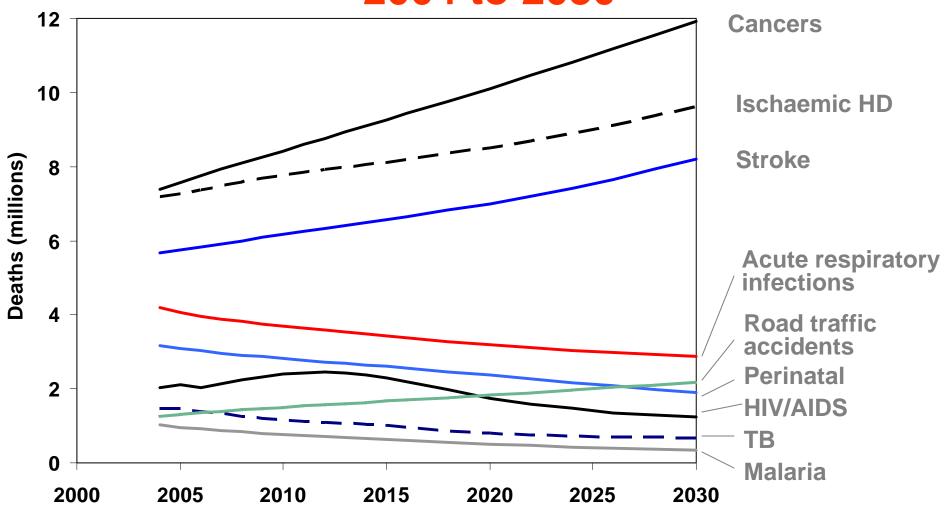
Tangchun Wu(邬堂春)

Ministry of Education Key Lab for Environment and Health, Tongji School of Public Health, HUST, Wuhan, China

David C. Christiani

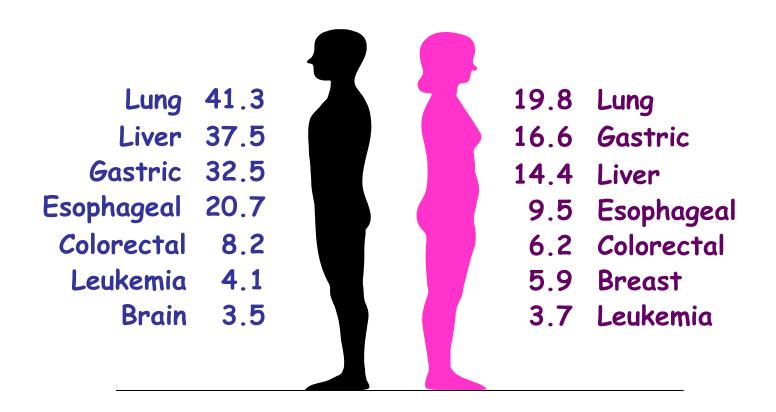
Harvard School of Public Health/ Harvard Medical School

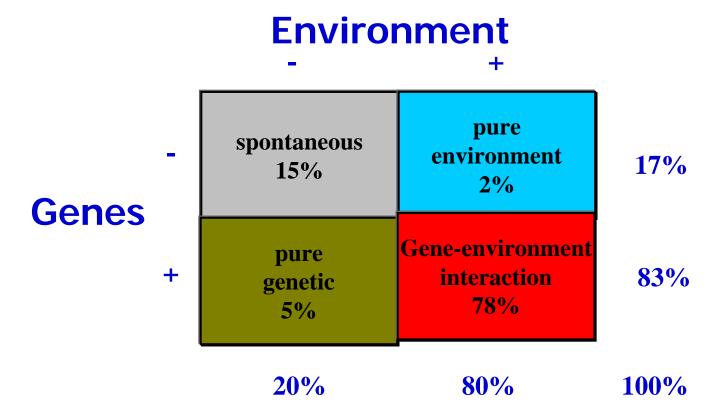
The five leading causes of death in China (2007)


Rank	Urban			Rural			
	Disease (ICD-10)	Mortality (1/100,000)	%	Disease (ICD-10)	Mortality (1/100,000)	%	
1	Cancer (Lung)	176.2	28.5	Cancer (Lung)	114.2	24.8	
2	Cerebrovascula r diseases	111.5	18.0	Cerebrovascular diseases	119.7	20.6	
3	Heart disease	100.6	16.3	Respiratory diseases	100.2	16.2	
4	Respiratory diseases	80.9	13.1	Heart diseases	86.0	14.8	
5	Trauma/ Poisoning	37.6	6.1	Trauma/ Poisoning	52.1	9.0	

UN summit on Non-Communicable Diseases (Nov19-20, 2011)

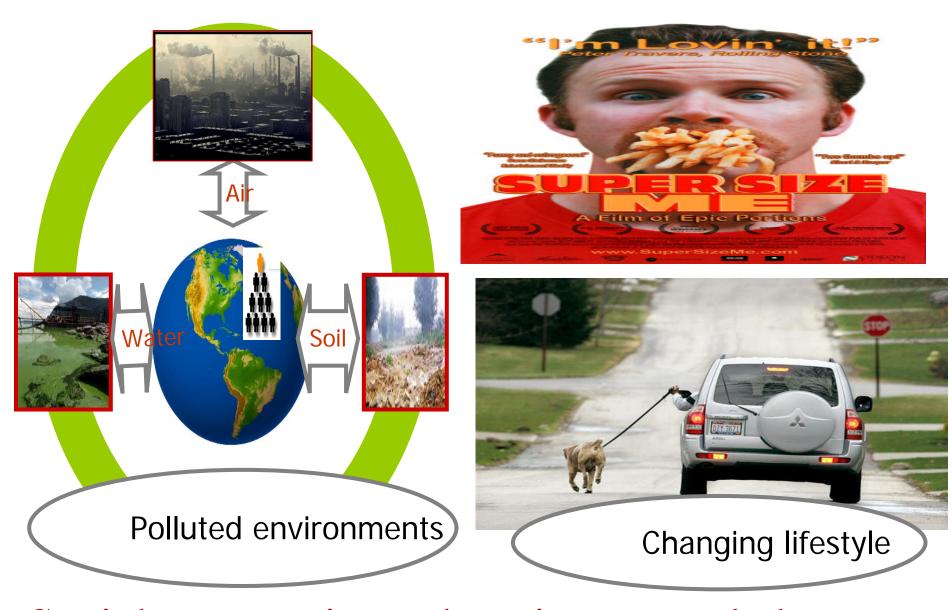
Not only increase of treatment costs and economic slowdown, but also a substantial social problem, even creating a social crisis


Global projections for selected causes, 2004 to 2030

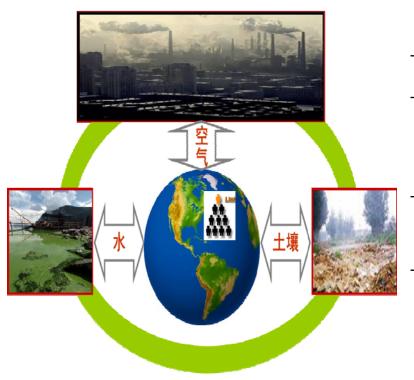

Updated from Mathers and Loncar, PLoS Medicine, 2006

Mortality rates of major types of cancer in China in 2004~2005

(data source: The Ministry of Public Health, 2008)



Interaction of Gene and Environment


"Genetics loads gun, but Environments trigger"

Schulte, 1994 Willett, 2002

Social, economic, and environmental changes

The cost of air pollution per year (2003)

	Air	Water		
Death	394,000	52000		
Economics	157.3 B	9.5 B		
Other Economics	36.7 B	158B		

Sourced from 《Cost of Pollution in China》

What are the contributors? Polluted environment

The NEW ENGLAND
JOURNAL of MEDICINE

Long-Term Exposure to Air Pollution and Incidence of Cardiovascular Events in Women

and stroke. In 2000, levels of PM_{2.5} exposure varied from 3.4 to 28.3 μ g per cubic meter (mean, 13.5). Each increase of 10 μ g per cubic meter was associated with a 24% increase in the risk of a cardiovascular event (hazard ratio, 1.24; 95% confidence interval [CI], 1.09 to 1.41) and a 76% increase in the risk of death from cardiovascular disease (hazard ratio, 1.76; 95% CI, 1.25 to 2.47). For cardiovascular events, the between-city effect appeared to be smaller than the within-city effect. The

Online article and related content current as of June 11, 2010.

Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution

C. Arden Pope III; Richard T. Burnett; Michael J. Thun; et al.

JAMA, 2002;287(9):1132-1141 (doi:10.1001/jama.287.9.1132)

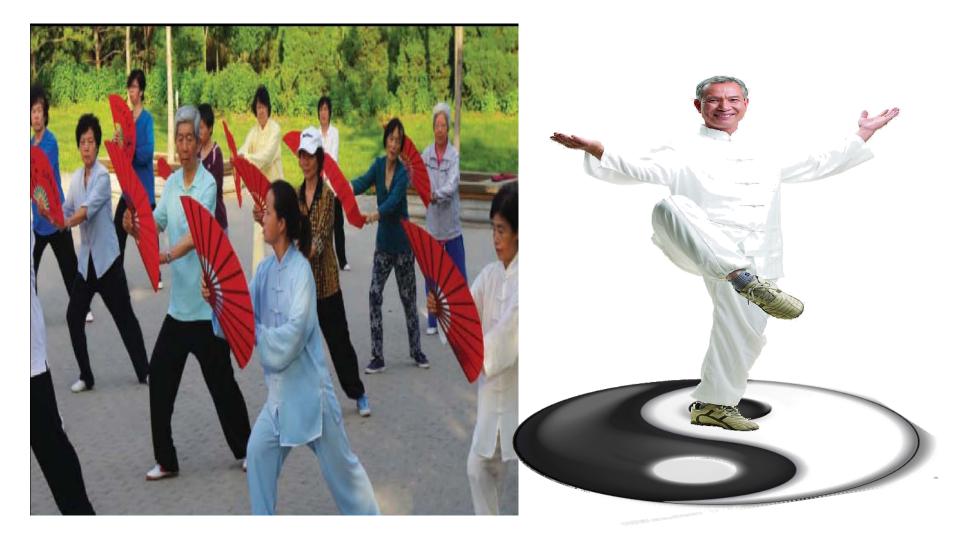
Results Fine particulate and sulfur oxide-related pollution were associated with all-cause, lung cancer, and cardiopulmonary mortality. Each 10-µg/m³ elevation in fine particulate air pollution was associated with approximately a 4%, 6%, and 8% increased risk of all-cause, cardiopulmonary, and lung cancer mortality, respectively. Mea-

The NEW ENGLAND JOURNAL of MEDICINE

Fine-Particulate Air Pollution and Life Expectancy in the United States

A decrease of 10 μ g per cubic meter in the concentration of fine particulate matter was associated with an estimated increase in mean (\pm SE) life expectancy of 0.61 \pm 0.20 year (P=0.004). The estimated effect of reduced exposure to pollution on life expec-

PM_{2.5} increased CHD


(NEJM 2007)

PM_{2.5} increased lung

cancer (JAMA 2002)

PM_{2.5} shortened life

(NEJM 2009)

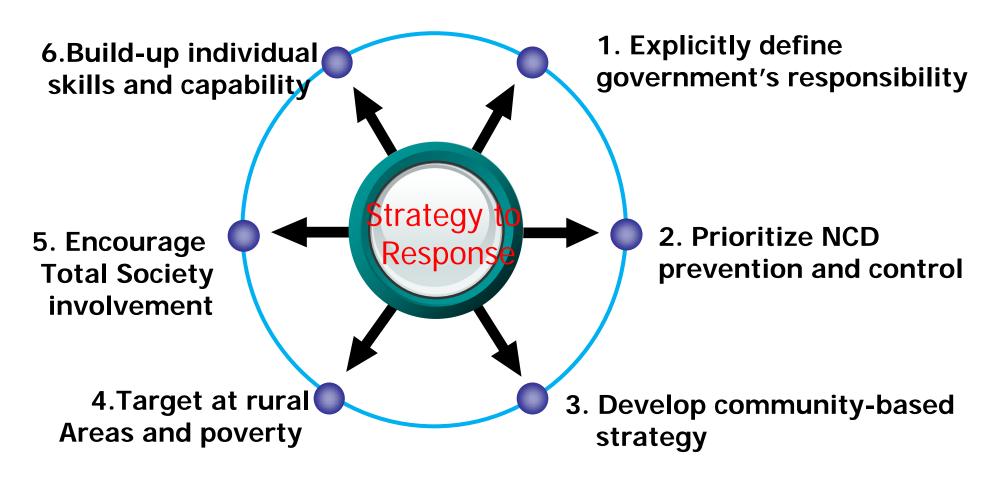

Physical activity subtypes and risk of metabolic syndrome (cluster of NCD) in middle-aged and older Chinese people: The unique role of tai chi and dancing

Table 4: Odds ratio and 95% CI for MetS according to categories of physical activity subtypes

Physical activity	Physical activity levels (hours per week)					D	Continuous
subtypes	0	0.1-2.0	2.1-3.5	3.6-6.0	>6.0	>6.0 P for trend	
Dancing							
No. of cases	4845	77	92	75	55		
No. of person	14310	275	342	320	267		
Model 1 OR (95% CI)	1.00	0.72 (0.55, 0.95)	0.65 (0.51, 0.83)	0.55 (0.42, 0.72)	0.46 (0.34, 0.62)	<0.001	0.92 (0.89, 0.94)
Model 2 OR (95% CI)	1.00	0.59 (0.40, 0.86)	0.68 (0.50, 0.93)	0.54 (0.39, 0.75)	0.45 (0.31, 0.65)	<0.001	0.91 (0.88, 0.94)
Tai chi							
No. of cases	4877	61	104	48	54		
No. of person	14570	227	338	197	182		
Model 1 OR (95% CI)	1.00	0.66 (0.49, 0.89)	0.80 (0.63, 1.01)	0.59 (0.42, 0.82)	0.74 (0.54, 1.03)	<0.001	0.95 (0.92, 0.98)
Model 2 OR (95% CI)	1.00	0.59 (0.40, 0.88)	0.83 (0.61, 1.13)	0.62 (0.41, 0.94)	0.71 (0.47, 1.10)	0.002	0.95 (0.91, 0.98)
Biking							
No. of cases	4846	88	88	50	54		
No. of person	14397	328	348	226	215		
Model 1 OR (95% CI)	1.00	0.90 (0.70, 1.16)	1.08 (0.85, 1.36)	0.70 (0.51, 0.96)	0.86 (0.63, 1.17)	0.089	0.97 (0.95, 1.00)
Model 2 OR (95% CI)	1.00	0.88 (0.63, 1.22)	1.23 (0.91, 1.65)	0.78 (0.52, 1.18)	0.72 (0.47, 1.11)	0.236	0.97 (0.93, 1.01)

Strategy to Respond to challenge:

—Six Key Components

(data source: The Ministry of Public Health, 2012)

